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ABSTRACT 

 

This study investigates the improvement in above ground 

biomass estimates when using a synergistic model based on 

lidar derived forest structural information (i.e., canopy cover 

percentage) and radar backscatter.  The results were cross-

compared with a radar only model. A two-layered radar 

backscatter model was also tested. The results showed that 

lidar-based structural information has the potential to 

increase the accuracy of biomass estimation by up to 20% 

depending on polarization and acquisition date.  A smaller 

improvement was observed when using a modeled estimate 

of the forest canopy cover as would be the case of a future 

lidar/radar joint space-borne mission. The two-layered 

vegetation backscatter model did not improve the biomass 

estimation accuracy with errors being higher when 

compared to a single-layer vegetation model. 

 

Index terms - forest biomass, lidar-radar synergies 

 
1. INTRODUCTION 

 

Global concern about the impacts of increased atmospheric 

concentrations of greenhouse gases such as CO2 on climate 

has focused attention on the dynamics of carbon in 

terrestrial ecosystems, particularly in forests which account 

for over 60% of the total carbon stock. Recent research has 

mainly focused on biomass retrieval from space-borne radar 

or lidar data. While space-borne lidar sensors only provide 

samples at isolated locations, radar has the mapping 

capability required for continuous spatial estimations. 

Various radar sensors have been used to model forest 

backscatter response with relatively limited accuracy partly 

due to the inadequate description of forest structural spatial 

variability. Previous investigations of radar–lidar synergy 

[1, 2] found that there was little to be gained by just adding 

radar metrics to lidar-based regression models. The lidar-

only models performed better with radar metrics being 

essentially redundant [3]. However, no attempt was made to 

expand radar backscattering models taking into account 

spatially explicit structural information obtained from lidar 

sensors. Lidar data could provide a priori information on 

forest structure that can be subsequently used for radar 

backscatter modeling. The aim of this study was to 

investigate the utility of embedding lidar-derived vegetation 

structural information into radar water cloud type 

backscatter models. In addition, an existing water cloud type 

radar backscatter model was modified to account for the 

backscattering components of different vegetation layers 

related to forest overstory and understory, respectively. 

 

2. STUDY AREA AND DATASETS 

 

The forest area studied (Gillenbah State forest) is located in 

New South Wales in Australia, near the town of Narrandera. 

The forest is dominated by white cypress pine (Calitris 

glucophylla) with 10% dispersed grey box trees (Eucalyptus 

microcarpa). The topography is nearly flat. A biometric 

survey was conducted of 60 circular plots (500 m
2
) clustered 

in 12 sites during September 2011. A cluster site consisted 

of five circular plots, one in the centre and one at each 

cardinal direction (Figure 1). The location, circumference 

and height of all trees with a diameter at breast height 

(DBH) greater than 5cm was recorded whereas smaller trees 

were counted and their average height recorded. Information 

from 10 additional sparsely vegetated plots was also 

collected. Total above-ground biomass (AGB) and biomass 

components (leaves, branches, stem wood) were estimated 

for each tree using species-specific allometric equations [4, 

5] and aggregated to plot level. The total AGB for 

individual plots varied between 1.5 and 180 t ha
-1

. 

The lidar data were acquired by a Riegl Q560 Airborne 

Laser Scanning (ALS). The ALS Q560 was flown over the 

forest area in September 2011 at an altitude of about 300m 

AGL. The system recorded all echo pulses within a small 

footprint (~15cm). An average first return pulse density of 

40 ppm was obtained after combining flight lines acquired 

from two different directions. The discrete returns were 

extracted from the raw lidar data and combined with the 

navigation data to yield geo-referenced point clouds. 

Accuracies of this procedure are approximately 0.4m 

horizontally and 0.15m vertically, with higher accuracies 

within individual scans. The point clouds were then 

classified into ground and non-ground returns. All non-

ground returns were considered vegetation since no man-

made features are located within the forest perimeter.  

Four dual-polarized ALOS PALSAR datasets (HH and



 
Figure 1. Location of the study area (black square in panel A) and field data sampling locations (red dots in panel B). The inset (C) 

shows the layout of sampled plots at each site and an  example of the tree spatial distribution measured at one sampling location. Panels B 

has as background a Landsat ETM+ panchromatic image. 

 

HV channels) were used in this study for forest backscatter 

modelling. The satellite images, acquired the year before 

ground and lidar data collection (April to August 2010), 

were multi-looked (2x8) to obtain similar ground pixel 

spacing in both azimuth and range (25m).  The intensity was 

transformed to radar backscatter coefficient (σ°) after 

applying the absolute calibration factor [6]. To express the 

speckle reduction achieved after multi-looking, the number 

of statistically independent looks was estimated by means of 

the equivalent number of looks (ENL) using homogeneous 

areas [7]. Due to the low ENL observed (8) speckle filtering 

[8] was applied using a 9x9 window size to further reduce 

data noise. All images were geocoded to the UTM 

coordinate system using a lookup table that described the 

transformation between the radar and the map geometry [9]. 

 

3. METHODS 

 

The water cloud-type backscatter model proposed in [10] 

was parameterized and subsequently inverted to obtain 

biomass estimates from radar data. The model was used in 

its original form (see eq. 1) that expresses the forest 

backscatter as a function of the area fill factor (η) and the 

forest transmissivity (T). The simplified model form (2) 

proposed in [10] was also used for cross-comparison. The 

simplified model was initially used for inversion since the 

area fill factor is not a commonly used parameter for forest 

inventory [10]. However, for our study the use of the 

original model form (1) was possible by extracting the area 

fill factor (i.e., forest percent cover) from the point cloud 

Lidar data. The total forest backscatter (σ°for) was modeled 

as the sum of ground scattering (direct and attenuated by the 

vegetation layer) (σ°gr) and the direct scattering of the 

vegetation (σ°veg) weighted by the area fill factor and the 

two-way vegetation transmissivity (T). The two–way 

transmissivity was initially expressed as a function of stem 

volume. However, since the stem volume represents a 

fraction of the forest biomass (taking into account wood 

density) the total ABG was used instead to estimate the two-

way transmissivity (i.e., T=e
-βAGB

 where β is an empirically 

defined coefficient). A two-layered vegetation model (3) 

was also considered for the biomass estimation. This model 

is an extension of the model proposed in [10] with the 

vegetation contributions being split by vegetation layers 

(σ°veg1 and σ°veg2). The area fill factor was derived from the 

lidar data (first returns over a specified height divided by the 

total number of first returns) for the entire vegetation strata 

(η) or by each layer (η1, η2) for vegetation heights below (η1) 

and above (η2) 6m (i.e., roughly the regrowth layer height). 
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The models were parameterized using the backscatter, 

the area fill factor and the AGB extracted for the 60 ground 

assessed plots (500 m
2
 each). Ten sparsely vegetated plots 

were also used for the backscatter modeling. The location of 

each ground sample plot within the PALSAR scenes was 

determined using GPS data collected during the field 

sampling. All models were subsequently inverted (4 to 6) to 

produce spatially explicit biomass estimates for each SAR 

acquisition date and SAR polarization. The radar based 

estimates were compared to the reference biomass measured 

on the ground to assess the absolute and relative estimation 

errors. The data were split by biomass intervals (20t ha
-1

 

each) and random samples were drawn from each interval to 

form the training and validation datasets. Ten iterations 

were carried out to minimize random sampling effects when  
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calculating average error metrics (i.e., Root Mean Squared 

Error-RMSE, Relative Error-RE% and correlation coefficient 

between estimated and measured biomass-r). 

To apply such enhanced radar backscatter models 

accurate information on the area fill factor is needed at large 

scales. Such data could be available from space-borne lidar. 

However, past and future space-borne lidar missions are not 

able to provide full spatial coverage with inter-beams areas 

not being sampled (Figure 2). The area fill factor for inter-

beam pixels could be interpolated using the nearest sampled 

lidar beams. Alternatively, the area fill factor could be 

modeled as a function of the radar backscatter and the 

estimates collected over the areas observed by the lidar 

sensor. The validity of the latter approach was tested for our 

study area as follows: 1) using the training samples (i.e., 

assumed as falling inside both the lidar beams and the radar 

images) a model describing the relationship between the 

area fill factor and the radar backscatter was parameterized, 

2) the area fill factor for the validation samples (i.e. assumed 

as falling outside the lidar beams but inside the radar images) 

was computed from the radar backscatter using the 

parameterized model 3) the radar backscatter model (1) was 

parameterized using the training samples, and 4) the 

biomass was estimated for the validation samples by 

inverting the water cloud model using the modeled area fill 

factor values (from step 2). 

 

 

 

 

 

 

 

 

 
Figure 2 Schematic representation of lidar sample beams 

(white circles) overlaid on a spatially continuous radar acquisition. 

 
4. RESULTS AND DISCUSSIONS 

 

The RMSE, RE% and r are shown in Table 1 for each ALOS 

PALSAR acquisition day and polarization. Table 1 also 

shows the difference in error metrics between models (1) 

and (2). A negative difference indicates higher accuracy of 

the original model when compared to the simplified form. 

For all days, polarizations and error metrics the inclusion of 

lidar-derived forest structural parameters (i.e., forest cover) 

significantly improved the estimation accuracy (Table 1). A 

mean improvement of about 3 t ha
-1

 was observed across 

days and polarizations which in relative terms corresponds 

to a 12% decrease of the biomass estimation error. 

Depending on acquisition date and polarization the relative 

estimation error improvement was as much as 20%. 

The higher improvements observed for the co-polarized 

channel (HH) is related to the scattering mechanism which 

is dominated by surface scattering suggesting that the area 

fill factor provided key information for model 

parameterization. 

Using a more complex two-layered vegetation model 

(3) did not increase the biomass estimation accuracy. In fact, 

an opposing effect was observed with the RMSE and RE% 

increasing by 13.4 t ha
-1

 and 13% (mean values computed 

for all polarizations and acquisition dates) when compared 

to the simplified model form (2). A significant factor when 

modeling and validating the models was the balanced 

repartition of the samples by biomass intervals. When using 

random repartition of the data between training and 

validation datasets, as opposed to a random stratified 

repartition, the biomass estimation errors were about 8% 

higher. This is probably caused by the inefficient 

parameterization of the model since not all intervals were 

always covered during the random data repartition due to 

the small number of samples for some biomass intervals.  

When using a radar-based area field factor (Figure 3) an 

improvement of both the RMSE (3.5 t ha
-1

) and the RE% 

(5%) with respect to the simplified model form (2) was 

observed while no improvement was observed for the r error 

metric (Table 2). This suggests that even for areas not 

covered by lidar data the biomass estimation from radar data 

could be enhanced although the gains in accuracy are 

somewhat lower than when using an area fill factor directly 

estimated from lidar data. 

 

 

Table 1. Error metrics of the water cloud model when using Lidar based forest cover information. The error metrics for the simplified 

model form are also given. The difference between the two models is displayed in bold. 

Model 

 

Error 

 metric 

2010.04.04 2010.05.20 2010.07.05 2010.08.20 mean 

HH HV HH HV HH HV HH HV 

(1) RMSE 

(t ha-1) 

28.1 23.7 28.6 23.3 32.0 30.8 27.7 26.0 27.5 

(2) 34.2 27.4 32.1 26.9 33.8 28.7 33.8 27.1 30.5 

Difference -6.1 -3.7 -3.5 -3.6 -1.7 2.2 -6.1 -1.1 -3.0 

(1) RE% 

(%) 

45.1 52.3 49.7 42.0 47.4 53.6 40.7 52.2 47.9 

(2) 59.8 60.0 69.2 54.1 55.1 61.9 60.0 59.0 59.9 

Difference -14.7 -7.7 -19.5 -12.1 -7.7 -8.3 -19.2 -6.7 -12.0 

(1) r 0.4 0.3 0.4 0.3 0.6 0.3 0.2 0.1 0.3 

(2) 0.1 0.3 0.2 0.2 0.3 0.5 0.2 0.0 0.2 

Difference 0.3 0.0 0.1 0.1 0.3 -0.2 -0.1 0.0 0.1 



 
Figure 3 Example of relationships between radar backscatter and 

the area fill factor for HH and HV polarizations (see Table 2 for 

correlation coefficients). 

Table 2. Error metrics of the water cloud model when using radar 

modeled area fill factor.  The error metrics for the simplified model 

form are also given for cross-comparison. In bold the difference 

between the two models. 

Model 

 

Error 

 metric 

2010.04.04 2010.05.20 mean 

HH HV HH HV 

(1) RMSE 

(t ha-1) 

28.8 24.7 26.9 23.7 26.0 

(2) 33.2 28.9 31.9 24.4 29.6 

Difference -4.4 -4.2 -5.0 -0.6 -3.6 

(1) RE% 

(%) 

69.5 45.2 71.6 49.5 58.9 

(2) 73.3 53.2 77.0 51.3 63.7 

Difference -3.8 -8.0 -5.4 -1.8 -4.8 

(1) r 0.50 0.34 0.46 0.31 0.40 

(2) 0.30 0.29 0.31 0.45 0.34 

Difference 0.2 0.05 0.15 -0.14 0.06 

r*  0.35 0.52 0.32 0.49 0.42 

* Correlation coefficient between the area fill factor and the radar 

backscatter for the training samples. 

 

 

5. CONCLUSIONS 

 

This study investigated the potential improvements in 

biomass estimation accuracy when using ancillary 

information of forest structure derived from lidar data. 

Furthermore, a more complex two-layered backscatter 

model was assessed and the influence of the sample 

distribution on model parameterization/validation was 

studied. The results showed that a significant decrease of the 

biomass estimation error was achieved when using ancillary 

information on forest structure derived from lidar data as 

opposed to a model that does not take into account the 

variability in forest canopy cover especially for co-polarized 

backscatter data. A two-layer backscatter model did not 

improve the estimation error over a single-layered model. 

Applying enhanced backscatter models at large scale would 

decrease the uncertainty of biomass estimates from radar 

data when appropriate forest structural information is 

available. 
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